独立成分分析

From Ufldl

Jump to: navigation, search
Line 7: Line 7:
== Introduction介绍 ==
== Introduction介绍 ==
-
'''原文'''
+
'''原文''':
If you recall, in sparse coding, we wanted to learn an over-complete basis for the data. In particular, this implies that the basis vectors that we learn in sparse coding will not be linearly independent. While this may be desirable in certain situations, sometimes we want to learn a linearly independent basis for the data. In independent component analysis (ICA), this is exactly what we want to do. Further, in ICA, we want to learn not just any linearly independent basis, but an orthonormal basis for the data. (An orthonormal basis is a basis (ϕ_1,…ϕ_n) such that  if  and 1 if i = j).
If you recall, in sparse coding, we wanted to learn an over-complete basis for the data. In particular, this implies that the basis vectors that we learn in sparse coding will not be linearly independent. While this may be desirable in certain situations, sometimes we want to learn a linearly independent basis for the data. In independent component analysis (ICA), this is exactly what we want to do. Further, in ICA, we want to learn not just any linearly independent basis, but an orthonormal basis for the data. (An orthonormal basis is a basis (ϕ_1,…ϕ_n) such that  if  and 1 if i = j).
-
[译文]
+
 
 +
'''译文''':
如果你还记得,在稀疏编码中我们希望为数据学习一个过完备基(over-complete basis)。具体来说,这意味着我们在稀疏编码中学习的基向量不一定是线性独立的。虽然在某些情况下这是可以的,但有时我们希望学习一个线性独立基。这正是我们在独立成份分析(ICA)中要做的。而且,在ICA中,我们希望学习的不仅是线性独立基,而且是标准正交基。(一个标准正交基是一个基(ϕ_1,…ϕ_n),满足ϕ_i∙ϕ_j={█(0  if i≠j@1 if i=j)┤)。
如果你还记得,在稀疏编码中我们希望为数据学习一个过完备基(over-complete basis)。具体来说,这意味着我们在稀疏编码中学习的基向量不一定是线性独立的。虽然在某些情况下这是可以的,但有时我们希望学习一个线性独立基。这正是我们在独立成份分析(ICA)中要做的。而且,在ICA中,我们希望学习的不仅是线性独立基,而且是标准正交基。(一个标准正交基是一个基(ϕ_1,…ϕ_n),满足ϕ_i∙ϕ_j={█(0  if i≠j@1 if i=j)┤)。
-
[一审]
+
 
 +
'''一审''':
如果你还记得,在稀疏编码中我们希望为数据学习一个过完备基(over-complete basis)。具体来说,这意味着在稀疏编码中学习到的基向量之间不一定线性独立。尽管在某些情况下这已经满足需要,但有时我们仍然希望得到一组线性独立基。例如在独立成份分析(ICA)中,这正是我们想要的。而且,在ICA中,我们希望学习到的基不仅要线性独立,而且还是一组标准正交基。(一个标准正交基 (ϕ_1,…ϕ_n)需要满足条件:ϕ_i∙ϕ_j={█(0  if i≠j@1 if i=j)┤)。
如果你还记得,在稀疏编码中我们希望为数据学习一个过完备基(over-complete basis)。具体来说,这意味着在稀疏编码中学习到的基向量之间不一定线性独立。尽管在某些情况下这已经满足需要,但有时我们仍然希望得到一组线性独立基。例如在独立成份分析(ICA)中,这正是我们想要的。而且,在ICA中,我们希望学习到的基不仅要线性独立,而且还是一组标准正交基。(一个标准正交基 (ϕ_1,…ϕ_n)需要满足条件:ϕ_i∙ϕ_j={█(0  if i≠j@1 if i=j)┤)。

Revision as of 03:13, 9 March 2013

Personal tools